Algebraic Expressions

Monomial : is an algebraic expression with 1 term. It can be:

$$
\begin{aligned}
& \text {-A variable: } a \quad x \quad ; \quad t \\
& \text {-A constant. } 5 \quad ;-3 \quad ; \frac{1}{2} \\
& \text { _A product: } 2 \mathrm{a} ;-4 \mathrm{x}^{2} ; 3 \mathrm{xy} ; \frac{1}{2} x^{2} y
\end{aligned}
$$

Note: the exponent must be a non-negative integer. i.e. $3 x^{-2} ; 2 \sqrt{x} ; 5 x^{1 / 3}$ are not monomials

Coefficient: is the factor by which a variable is multiplied | $3 x^{n} \rightarrow \exp$ onent $\in \mathrm{N}$ | |
| :---: | :---: |
| \vdots. | |
| coefficient | var iable |

Note: if the coefficient is 1 , it is not written for example: $a b=1 a b ;-1 x^{2}=-x^{2}$

Like terms: are terms with identical variables and identical exponents (not coefficients)
$\begin{array}{llll}\text { Examples: } & 6 \text { and }-2 & -2 a^{3} b^{2} \text { and } 5 a^{3} b^{2} \\ & 3 a \text { and } 4 a & 0.5 x y^{5} \text { and } 10 x y^{5}\end{array}$
The Degree of a term is the sum of the exponents of the variables.
$\begin{array}{lllll}\text { Examples: } & 3 & \text { degree } & 0 & \\ & 3 x & \text { degree } & 1 & \\ & 3 x^{2} & \text { or } 3 x y & \text { degree } & 2 \\ & 3 x^{2} y & \text { degree } & 3 & \\ & 3 x^{2} y^{3} & \text { degree } & 5 & \text { etc. }\end{array}$
To find the numerical value of an algebraic expression we replace the variable by the given value.

	$4 \mathrm{x}^{3} \quad i f x=2$	$2 \mathrm{a}^{2} \quad i f a=-3$	$2 \mathrm{x}^{3} y^{2} \quad i f x=2 ; y=-3$
Examples:	$=4(2)^{3}$	$=2(-3)^{2}$	$=2(2)^{3}(-3)^{2}$
	$=4(8)$	$=2(9)$	$=2(8)(9)$
	$=32$	$=18$	$=144$

Binomial: is an algebraic expression with 2 terms.
Examples: $\quad 3 \mathrm{x}+2 ; 2 \mathrm{a}^{2}+3 \mathrm{a} ; 4 \mathrm{ab}-2 \mathrm{a}$
Trinomial: is an algebraic expression with 3 terms.
Examples: $\quad 2 a^{2}+3 a+5 ; b^{3}-2 b+5 ; 2 x^{2}-6 x y+7 y$
Polynomial: is an algebraic expression with 1 or more terms, separated by $+/-$, and the terms are written in decreasing order of powers.

The degree of a polynomial: is the degree of the term with the highest degree.
Example:
$3 x^{2} y^{2}+4 x y^{2}$ has degree 4
Simplifying an algebraic expression means representing it using as few terms as possible (collecting like terms)
The Zero of a polynomial is the value of the variable which makes the polynomial equal to zero

2.1 Monomials

Refer to first half of the Handout: "Algebraic Expressions", for definitions.

A MONOMIAL is the product of a variable with a positive integer exponent and real number.

LIKE TERMS are terms with identical variables and identical exponents (not coefficients)

The DEGREE of a monomial is the sum of all its exponents.

$$
\begin{array}{|l|l|l}
\hline \frac{1}{b^{5}} & \frac{1}{2} y & 3 x \\
7 & \sqrt{5 a} \\
& 12 a^{\frac{1}{2}} & -22 a^{5} b^{7} \\
2 y^{-5}
\end{array}
$$

Ex 1: Monomial
Vs
Not a Monomial

Ex 2: Are the following pairs like terms?

1) $2 a,-2 a$
2) $11 s t^{2} u^{3}, 9 u^{3} t^{2} s$
3) $4 b, 6 b a$
4) $\frac{2}{5},-8$
5) $3 x,-7 x^{2}$
6) $2 a, 3 a b$
7) $a b c,-a b c$
8) $3 x, 3 x^{0}$
9) $3 b^{0}, 5$
10) $2 a x^{2}$, $a x$
11) $6 x, \frac{4}{x}$
12) $2 a^{2} x^{3},-2 a^{2} x^{3}$
13) $3 x^{2} y, 4 x y^{2}$
14)Is $2 x^{-1}$ a monomial?

Ex 3: Determine the degree of each monomial

Monomial
 $5 x^{2}$
 $3 y^{12}$
 -7
 $6 x y^{4}$
 $3 a^{3} b^{3}$

Degree

We can use Algi-tiles to represent single variable polynomials: Introducing the Tiles \qquad
\square +1 Tile

-1 Tile
+x Bar

$+x^{2}$ Square

Note that 2 opposites of the same type cancel each other out when added.

Practice:
Page 50 \# 1, 2, 3

2.2 Monomial Operations

- Adding/ Subtracting: Only like terms can be +/(simplified to a single term)
- Non like terms cannot be simplified to a single term
- When you $+/$ - terms, do it to the coefficients only.
- Multiplying/ Dividing: they don't have to be like terms.
- Multiplying: $\left(a x^{m}\right)\left(b x^{n}\right)=a b x^{m+n}$
- Dividing: $\quad \frac{a x^{m}}{b x^{n}}=\frac{a}{b} x^{m-n}$

Ex 1: Simplify the following monomials

$$
\begin{array}{cc}
3 x^{2}+4 x^{2} \\
5 x^{3} y^{2}-3 x^{3} y^{2} & \\
(2 a)(5 b) & \\
4(1.5 a) & \text { Adding } \\
\frac{12 x^{3} y^{4}}{6 x^{2} y^{2}} & \\
\text { Multiplying } \\
\text { Dividing }
\end{array}
$$

2.3 Polynomials

Refer to second half of the Handout: "Algebraic Expressions", for definitions.

Do P. 54 Act. 1 and read the green box that follows.
A POLYNOMIAL is the sum or difference of many unlike MONOMIALS.

Write the terms in decreasing order of degrees.
Ex: $\quad 12 x^{7}+6 x^{4}-7 x^{2}+7$

Ex 1: Simplify:

$$
P(x)=2 x^{2}+5 x^{3}+3 x+6+3 x+4 x^{2}+7-5 x^{3}
$$

Ex 2: Evaluate the above trinomial for $x=2$ (ie. Evaluate $\mathrm{P}(2)$) $P(2)=$

Ex 3: Rewrite each polynomial and give its degree.
a) $4 x y^{2}+3 x^{2} y^{2}$
b) $2-5 y^{2}+6 y$

Ex 4: If $P(x, y)=-3 x^{2} y+2 x y^{2}-2 x+3 y-5$; evaluate $P(-2,1)$

Ex 5: A mother is 5 times as old as her daughter.
a) If the girl is x years old, how old is the mother?
b) How old will each be in 13 years?

	Mother	Girl
Now		
In 13 years		

c) What will their total age be in 13 years?

2.4 Polynomial Operations

-A- Sum and difference of Polynomials

Adding Polynomials: group like terms

Ex 1: $\quad 2 x^{2}-3 x-3$
$+-2 x^{2}+2 x+6$
=
Ex 2: Simplify
$3 x^{2}+(5 x+10 x)=$
$\left.8 x y^{2}+9 x^{2} y\right)+5 x y^{2}=$
$(6 a+\underline{12 b})+(\underline{7 a}+\underline{5 b})=$
$(7 y+6)+8 y^{2}+10=$

Ex 4: Simplify by subtracting the polynomials

Subtracting polynomials: subtract each like term.
(It is like adding the opposite of each term)
Ex 3:

$$
\begin{array}{r}
2 a^{2}+5 a+8 \\
-\quad a^{2}-4 a+5 \\
=
\end{array}
$$

Same as: $\quad 2 a^{2}+5 a+8$

$$
\begin{aligned}
& +-a^{2}+4 a-5 \\
& =
\end{aligned}
$$

$7 x-(5 x+10 x)=$
$\left.8 x^{2}+4 x-6 x^{2}+2 x\right)=$
$4 a+7 b-\overline{(12 a-5 b)}=$
$7 c+6 c^{2}-8 c^{2}-10=$

$$
\begin{gathered}
S(h)=16 h-35 \quad P(h)=10 h+120 \\
T(h)=26 h+85
\end{gathered}
$$

c) Find the difference between their incomes
d) If in one pay period they work 30 hours each, what is their total pay?

Ex 6: Mix bag Polynomials review

1) Simplify: $\quad 3 x^{2}+10 x^{2}-6 x+4 x$
2) True or false:
a) A monomial can have a negative exponent.
b) Like terms are monomials with the same variables raised to the same exponents.
c) A polynomial has at least two UNLIKE TERMS.
3) Simplify: $3 a+5 b-(7 a+9 b)$
4) Is $4 x^{2}-7 x+10$ a trinomial?
5) Simplify: $\quad 3 x+7 y-(2 x-6 y)$
6) Circle the monomials
$\sqrt{5 a} \quad 7 a^{5} b^{7} \quad y^{-10} \quad 6 \quad 12 x^{4}$

Practice:

Page 57 \# 1(aceg), 2(ac), 3, 4, 5

1) $13 x^{2}-2 x$
2) a) False
b) True
c) True
3) $-4 a-4 b$
4) $Y e s$
5) $x+13 y$
6) $7 a^{5} b^{7}, 6, \& 12 x^{4}$

2.4 Polynomial Operations

-B- Product of Polynomials

Case 1- Monomial times a Polynomial:

Examples: $3(2 x+4)=$

Page 59 \# 6 (a) $3 x(5 x-2)=$
(b) $-2 x^{2}(3 x+5)=$
(f) $\frac{2}{3} x^{2}\left(6 x^{2}-9 x+3\right)=$

Case 2-Binomial times a Binomial:

a) $(x+1)(x+2)$

b) $(x-1)(x+3)$

$=$

Option 2: Expand and simplify (FOIL)

$$
\left.\begin{array}{rl}
& (2 \hat{x}+2)(x+4)
\end{array} \begin{array}{c}
\text { O- First } \\
\text { O- Outside } \\
\text { - Inside } \\
\text { L- Last }
\end{array}\right\}
$$

Ex 1: Multiplying Polynomials

$$
\begin{array}{r}
3 x\left(5 x^{2}+2 x\right)= \\
-5(2 x+1)= \\
-2 x^{2}(3 x-3)= \\
\frac{3}{2} x^{2}\left(6 x^{3}-8 x+4\right)=
\end{array}
$$

Case 2- Binomial times a Binomial:

$$
(2 x+2)(x+4)
$$

Option 1: Use Distributive Property:

$$
\begin{aligned}
& 2 x(x+4)+2(x+4) \\
= & 2 x^{2}+8 x+2 x+8 \\
= & 2 x^{2}+10 x+8
\end{aligned}
$$

Ex 2: Expand and simplify (FOIL)

$$
(x-3)(x+5)
$$

Ex 3: Foil practice
$(x+2)(x+2)=$

$$
(x-3)^{2}=
$$

$(4 x-3)(2 x+1)=$ \qquad

Ex 4: (page 59 \# 8 (d))
$(3 x+2)(2 x-3)-(x-1)(2 x+1)$

Ex 5: Find the missing factor

$$
(\ldots \quad)(2 x-5)=8 x^{2}-20 x
$$

Practice:
Page 59 \# (6, 7, 8, 9 aceg of each) page 60 \# 11, 12

2.4 Polynomial Operations

-D- Division of Polynomials
Case 1- Polynomial divided by a constant:

Ex 1: $\quad(4 x+8) \div 2=$

Ex 2: $\quad \frac{6 x-18}{3}=$

Ex 3: $\quad \frac{8 x^{2}+12 x+16}{4}=$

Case 2-Polynomial divided by a Monomial:

Ex 1: $\quad\left(4 x^{2}+2 x\right) \div 2 x=$

Ex 2: $\quad \frac{-14 x^{3}+35 x^{2}}{7 x^{2}}=$ Divide each term by the Monomial. Following the laws of exponents.

Ex 3: $\quad \frac{4 x^{3}+8 x^{2}-6 x}{2 x}=$

Ex 4 : Simplify by dividing

\qquad
$\frac{18 x^{2}+8 x+6}{3}$
$\frac{20 x y^{5}-15 x y^{2}+30 x^{2} y^{4}}{5 x y}$
릅 \qquad

2.4 -E- Removing the common factor

A Factor is an integer that divides evenly into another number.

The factors of 6 are... \qquad

The factors of 24 are...
\qquad

The Greatest Common Factor (GCF) of a polynomial: is the largest factor that divides evenly into each term.
$>$ Factoring is the exact opposite of expanding.
$>$ We expand a product and factor a sum.
$>$ To factor by removing the Greatest Common Factor:

1. Find the GCF \rightarrow the gcf of the coefficients, and the gof of the variables
(for each variable it will be the one with the smallest exponent)
2. Find the second factor: divide each term in the polynomial by the GCF you found.
3. Always check by expanding.

Why are there 60 seconds in a minute, why not 100?

Factors of 60:

\qquad
Factors of 100:

60 has 12 factors.
100 has 9 factors.

The Babylonians realized 60 is more convenient for their number system! (More factors)

Ex 1: Find the gcf

a) $8,16,40$
b) $6 x^{2}, 24 x^{3}, 12 x^{4}$
c) $28 x^{2} y^{2}, 14 x^{3} y^{2}, 21 x^{2} y^{3}$ \qquad
d) $15 a^{6} b^{7}, 3 a^{3} b^{5}, 21 a^{6} b^{4}$ \qquad

Ex 2: Factor by removing the gcf

a) $5 x+10 y-15$
b) $12 x^{2}-8 x$

Ex 3: Factor by pulling out the GCF

$$
\begin{array}{r}
4 x+6= \\
9 x-15= \\
6 x^{2}+10 x= \\
49 x^{3} y^{2}-21 x^{2} y^{2}+14 x^{3} y^{3}= \\
2 a^{2} b^{2}-6 a b^{3}+4 a b^{2}= \\
x(x+3)+2(x+3)=
\end{array}
$$

