Algebraic Expressions

Monomial : is an algebraic expression with 1 term. It can be:

A variable:
$$a$$
; x ; t
A constant: 5 ; -3 ; $\frac{1}{2}$
A product: $2a$; $-4x^2$; $3xy$; $\frac{1}{2}x^2y$

Note: the exponent must be a non-negative integer. i.e. $3x^{-2}$; $2\sqrt{x}$; $5x^{1/3}$ are not monomials

Coefficient:is the factor by which a variable is multiplied $3x^n \rightarrow exp onent \in \mathbb{N}$ \vdots \ddots coefficientvariable

Note: if the coefficient is 1, it is not written for example: ab = 1ab; $-1x^2 = -x^2$

Like terms: are terms with identical variables and identical exponents (not coefficients)

Examples:	6	and	-2	-2a ³ b ²	and	5a ³ b ²
	3a	and	4a	0.5xy⁵	and	10xy⁵

The Degree of a term is the sum of the exponents of the variables.

3	degree	0	
3x	degree	1	
3x ² or 3xy	degree	2	
3x ² y	degree	3	
3x ² y ³	degree	5	etc
	3 3x 3x ² or 3xy 3x ² y 3x ² y ³	$\begin{array}{ccc} 3 & degree \\ 3x & degree \\ 3x^2 \ or \ 3xy & degree \\ 3x^2y & degree \\ 3x^2y^3 & degree \end{array}$	$\begin{array}{ccccccc} 3 & degree & 0 \\ 3x & degree & 1 \\ 3x^2 \text{ or } 3xy & degree & 2 \\ 3x^2y & degree & 3 \\ 3x^2y^3 & degree & 5 \end{array}$

To find the numerical value of an algebraic expression we replace the variable by the given value.

-3

	$4x^3$ if $x = 2$	$2a^2$ if $a = -3$	$2x^{3}y^{2}$ if $x = 2$; $y =$
Examples:	$=4(2)^{3}$	$=2(-3)^{2}$	$=2(2)^{3}(-3)^{2}$
Exampleo.	=4(8)	=2(9)	=2(8)(9)
	=32	=18	=144

Binomial: is an algebraic expression with 2 terms.

Examples: 3x + 2; $2a^2 + 3a$; 4ab - 2a

Trinomial: is an algebraic expression with 3 terms.

Examples: $2a^2 + 3a + 5$; $b^3 - 2b + 5$; $2x^2 - 6xy + 7y$

Polynomial: is an algebraic expression with 1 or more terms, separated by +/-, and the terms are written in decreasing order of powers.

<u>The degree of a polynomial</u>: is the degree of the term with the highest degree. Example: $3x^2y^2 + 4xy^2$ has degree 4

Simplifying an algebraic expression means representing it using as few terms as possible (collecting like terms)

The Zero of a polynomial is the value of the variable which makes the polynomial equal to zero

2.1 Monomials Refer to first half of the Handout: "Algebraic Expressions", for definitions.	$\frac{1}{b^{5}} \frac{1}{2} y \frac{3x}{7} \frac{\sqrt{5a}}{12a^{\frac{1}{2}}} \frac{-22a^{5}b^{7}}{2y^{-5}}$ Ex 1: Monomial Vs Not a Monomial
A MONOMIAL is the product of a variable with a positive integer exponent and real number.	
LIKE TERMS are terms with identical variables and identical exponents (not coefficients)	
The DEGREE of a monomial is the sum of all its <u>exponents</u> .	2

3

Ex 2: Are the following pairs like terms?

1) 2a , -2a	8) 11st ² u ³ , 9u ³ t ² s
2) 4b , 6ba	$(9)^{\frac{2}{2}}$, -8
3) 3x , -7x ²	10) 2a , 3ab
4) abc , -abc	11)3x , 3x ⁰
5) 3b ^o , 5	12)2ax ² , ax
6) 6x , 4	13)2a ² x ³ , -2a ² x ³
7) 3x²y , 4xy²	14)Is 2x ⁻¹ a monomial?
	3

Ex 3: Determine the degree of each monomial

Monomial	5x ²	3y ¹²	-7	6xy ⁴	3a ³ b ³
Degree					

We can use Algi-tiles to represent single variable polynomials: Introducing the Tiles

Note that 2 opposites of the same type cancel each other out when added.

Practice: Page 50 # 1, 2, 3

2.2 Monomial Operations

- <u>Adding/ Subtracting</u>: Only like terms can be +/-(simplified to a single term)
 - Non like terms cannot be simplified to a single term
 - When you +/- terms, do it to the coefficients only.
- <u>Multiplying/ Dividing</u>: they don't have to be like terms.
- Multiplying: $(ax^m)(bx^n) = abx^{m+n}$
- Dividing:
- $\frac{ax^m}{bx^n} = \frac{a}{b} x^{m-n}$

Ex 1: Simplify the following monomials

Practice: Handout Page 52 # 1, (2 - 7 aceg each), 8

 2.3 Polynomials Refer to second half of the Handout: "Algebraic Expressions", for definitions. Do P. 54 Act. 1 and read the green box that follows. A POLYNOMIAL is the sum or difference of many unlike MONOMIALS. Write the terms in <u>decreasing order</u> of degrees. 	$P(x) \text{ is just the notation} \\ \text{Ex 1: Simplify:} \\ P(x) = 2x^2 + 5x^3 + 3x + 6 + 3x + 4x^2 + 7 - 5x^3 \\ \text{Ex 2: Evaluate the above trinomial for } x = 2 \\ (\text{ ie. Evaluate P(2) }) \\ P(2) = \\ \end{array}$
Ex: $12x^7 + 6x^4 - 7x^2 + 7$	2
Ex 3: Rewrite each polynomial and give its degree. a) $4xy^2 + 3x^2y^2$ b) $2 - 5y^2 + 6y$	Ex 5: A mother is 5 times as old as her daughter. a) If the girl is x years old, how old is the mother?
Ex 4: If $P(x,y) = -3x^2y + 2xy^2 - 2x + 3y - 5$; evaluate P(-2,1)	b) How old will each be in 13 years? <u>Mother Girl</u> <u>In 13 years</u> c) What will their total age be in 13 years?

Practice: Page 55 # 1,2 Page 55 # 3 – 12 (6,9,11,12 all, the rest a,c only)

Ex 6: Mix bag Polynomials review

- Simplify: 3x² + 10x² 6x + 4x
 True or false:

 A monomial can have a negative exponent.
 - b) Like terms are monomials with the same variables raised to the same exponents.
 - c) A polynomial has at least two UNLIKE TERMS.
- 3) Simplify: 3a + 5b (7a + 9b)
- 4) Is $4x^2 7x + 10$ a trinomial?
- 5) Simplify: 3x + 7y (2x 6y)
- 6) Circle the monomials
 - $\sqrt{5a}$ $7a^5b^7$ y^{-10} 6 $12x^4$

Solutions

- 13x² 2x
 a) False
 - b) True
 - c) True
- 3) -4a 4b
- 4) Yes
- 5) x +13y
- 6) 7a⁵b⁷, 6 , & 12x⁴

Practice: Page 57 # 1(aceg), 2(ac), 3, 4, 5

2.4 – E- Removing the common factor	Why are there 60 seconds in a minute, why not 100?
A Factor is an integer that divides evenly into another number. The factors of 6 are	Factors of 60:
The factors of 24 are	The Babylonians realized 60 is more convenient for their number system! (More factors)
 The Greatest Common Factor (GCF) of a polynomial: is the largest factor that divides evenly into each term. Factoring is the exact opposite of expanding. We expand a product and factor a sum. To factor by removing the Greatest Common Factor: 1. Find the GCF→ the gcf of the coefficients , and the gcf of the variables (for each variable it will be the one with the smallest exponent) Find the second factor: divide each term in the polynomial by the GCF you found. Always check by expanding. 	Ex 1: Find the gcf a) 8, 16, 40 b) $6x^2$, $24x^3$, $12x^4$ c) $28x^2y^2$, $14x^3y^2$, $21x^2y^3$ d) $15a^6b^7$, $3a^3b^5$, $21a^6b^4$
Ex 2: Factor by removing the gcf a) $5x + 10y - 15$ b) $12x^2 - 8x$	Ex 3: Factor by pulling out the GCF 4x+6= 9x-15= $6x^2+10x=$ $49x^3y^2-21x^2y^2+14x^3y^3=$ $2a^2b^2-6ab^3+4ab^2=$ x(x+3)+2(x+3)= $2x^{2}b^{2}+14x^{2}+14$

Practice: P. 67 # 44 – 47

7